Toward Property Rights in Spectrum:
The Important and Difficult Policy Choices Ahead

Dale Hatfield* & Phil Weiser**

Imagine a world where government regulation of gasoline, justified by scarcity of supply, allowed 20% of the gasoline in the U.S. to be used for farming; 20% for manufacturing; 20% for home use; 20% for government; and another 20% held in reserve for future potential government uses. In this world, prices would regulate the use of gasoline within each sector, but consumers would pay vastly different prices for, say, farming and residential use.

One response to such a state of affairs would be regulatory “arbitrage,” where lawyers would enable firms to profit without taking risks by convincing government regulators that certain uses were not, for example, really residential but actually for farming. Another, more economically sensible response, would be to reconsider whether government “command-and-control” restrictions actually served the public—as opposed to certain privileged groups (i.e., those with generous allocations of gas or effective lawyers).

In the world of spectrum policy today, the United States has a system much like this gasoline example. Certain groups enjoy generous allocations of spectrum; others are starving for more access to it. Consequently, many telecommunications lawyers earn their livings making arguments along the lines noted above.

* Adjunct Professor of Telecommunications at the University of Colorado.
** Associate Professor of Law and Telecommunications at the University of Colorado. The authors received support from NSF grant CNS 0428887 in preparing this document. They acknowledge the research assistance of Todd Spanier, library assistance from Jane Thompson, and a series of helpful discussions with Ellen Goodman, Robert Matheson, John Murray, and other participants in the Silicon Flatirons Summer Spectrum Series.
The origins of the current command-and-control model are more complicated than often appreciated but, at its core, it reflects a New Deal “wise man” sensibility that government planning can divine an effective allocation of resources. Unfortunately, government has rarely forecast technological developments accurately. This explains, for example, why United States broadcasters continue to own “beachfront property”—the most desirable bands of radio spectrum—while innovative wireless communications companies clamor for more. Thirty years ago, when a majority of Americans relied on over-the-air television and few used cellular telephones, this state of affairs might have been defensible. Today, when European wireless companies possess twice as much spectrum as their American counterparts and television broadcasters reach only around 15% of Americans through over-the-air transmissions, this state of affairs can no longer be defended.

In Congress, the Federal Communications Commission (FCC), and the academy, there is an emerging consensus that U.S. spectrum policy is deeply flawed, but the way forward is unclear. On the congressional front, a critical opportunity is within reach to expedite the return and redeployment of a set of licenses now being used by the television broadcasters, as part of the transition to digital television. Unfortunately, even the return of these licenses is a fairly modest step toward comprehensive spectrum policy reform.

Spectrum policy is important because the world is becoming increasingly dependent on wireless communications and broadband Internet access. Moreover, wireless spectrum plays a critical role in national defense, homeland security, and other important services like weather satellites. In the case of wireless communications, the importance of more readily access to spectrum is obvious—the radio spectrum is the sine qua non of all such communications.

Spectrum policy influences broadband Internet access too. Today, would-be consumers of broadband can choose between DSL and cable modem services in most parts of the United States. But for those living in rural areas without access to any wired broadband service and those interested in a third or fourth broadband option, spectrum policy reform is critical to enabling wireless broadband providers to emerge as another major source of Internet access.

It is important to make clear at the outset that the concept of “spectrum policy reform” means different things to different people. For some, the critical challenge is merely ending the legacy restrictions that command and control how spectrum is used. This could be accomplished by either leaving the spectrum as a “commons” or by developing a system of property-like rights\(^2\) to govern licenses to use the radio spectrum. In either case, government policy would need to transition spectrum away from legacy users—like UHF television broadcasters—who are not allowed to sell their licenses for other uses and who are not about to surrender the spectrum they have been granted without a fight (or some reward).

For present purposes, we will not focus on the challenges of transitioning from the old regime to a new one, or even whether the new regime should include a commitment to spectrum left available as part of a commons. Rather, we are interested in explaining how promoting a property rights regime in spectrum is not nearly as simple as some suggest. In short, spectrum is not like land. Consequently, spectrum property rights will require a much more complicated legal regime than that used for real property rights. Without an appropriate understanding of radio spectrum and how it differs from real property, we believe that important efforts to establish

\(^2\)Technically speaking, the Communications Act does not allow any individual or firm to possess a property right in radio spectrum. See 47 U.S.C. § 301; see also Note, Federal Control of Radio Broadcasting, 39 YALE L.J. 244, 250 (1929) (the premise that the “the government owns the ether” was an idée fixée in the debates of Congress over the Radio Act of 1927). Nonetheless, the FCC, with the support of Congress, has moved toward a “property rights-like” treatment of spectrum licensees. Consequently, we will often use the phrase “property-like” rights, but we will also use the less precise (and often used) terms of “property rights,” “property rights” advocates, or “property rights” model.
clearly defined, defensible, and divisible property-like rights will, at best, fail to realize their objective or, at worst, be counterproductive.

This paper proceeds in five parts. Part I sets forth the basic background of spectrum policy as it currently exists. Part II outlines the current state of the debate and surveys the notable works that attempt to define property rights in spectrum. To underscore the shortcomings of the current proposals, Part III explains how they fail to appreciate the nature of radio wave propagation and thus do not provide a reliable guide for developing clear and enforceable spectrum property rights. Part IV outlines an alternative framework that takes account of how these effects should inform the design of property-like rights for spectrum. Finally, Part V sets forth our conclusions and recommendations.

I. Background

For most Americans, the radio spectrum is an elusive concept. For many years, scientists could not believe that “air” could conduct radio waves or electricity—think of Benjamin Franklin’s experiments with lightning—and thus assumed that a substance called “the ether” resided in the atmosphere. During the later years of the 1800s, scientists concluded otherwise, discovering some of the essential characteristics of how radio technology works. In honor of one of these scientists, Heinrich Hertz, the defining unit of the radio spectrum—the frequency of radio waves—is measured in “Hertz” or “Hz” for short.

In the years after the work of Hertz and others, inventors began to exploit the fact that, by modulating a given range of frequencies, individuals could communicate information over

3. One kHz is one thousand Hz, one MHz is one million Hz, and one GHz is one billion Hz. Historically, the greater number of frequencies used for a particular communications link correlated with greater power levels and increased bandwidth. Accordingly, a transmission for a broadcast television station uses 6 MHz, or 200 hundred times as much bandwidth as an analog cellular voice channel.
distances without wires or other physical media. In the case of analog cellular services, a
frequency range (often called a “channel” or “band”) 30,000 Hz (or 30 kHz) “wide” can provide
sufficient bandwidth to establish a reliable communications link.

Significantly, one can use a particular 30 kHz channel to provide analog cellular service
on one day and then still have the same amount of radio spectrum available for use tomorrow,
meaning that spectrum is infinitely renewable. Nonetheless, spectrum is still a scarce resource in
that two individuals cannot use the same frequency at the same time and in the same place
without canceling out (or at least interfering with) one another’s transmissions.

When commentators discuss the radio spectrum, they generally focus on the set of
frequencies that are most suitable for commercial uses. Because different bands within the radio
spectrum have different technical characteristics, some bands are more attractive for particular
purposes than others. The most notable uses of spectrum rely on the frequencies between 300
MHz and 3 GHz because the physical dimensions of the antennas required are reasonable, the
associated transmitting and receiving devices are less costly, and, most fundamentally, the radio
waves are less susceptible to being blocked or weakened by natural or man-made obstacles such
as hilly terrain or tall buildings. To be sure, technological change can minimize such obstacles
and the range of usable spectrum has expanded over time, but when commentators discuss the
“radio spectrum,” they often have in mind this set of frequencies.

The concept of “spectrum management” generally refers to the broad array of activities
associated with the regulation of this somewhat unusual natural resource. In short, it includes (1)
allocating bands of frequencies for certain purposes (e.g., television broadcasting, terrestrial
mobile radio services, or unlicensed spectrum not designated for a particular use); (2) assigning
licenses that authorize individuals or firms to use particular bands of spectrum; (3) developing the
rules and regulations that govern the use of a channel or group of channels (e.g., maximum transmitter power) within a band in a specified geographical area; and (4) enforcing the associated rules and regulations once they are adopted. As noted at the outset, the FCC has traditionally relied on a “command-and-control” model of regulation that presumed that “wise men” at the helm could best determine the allocation and particular assignments for the licenses to use spectrum at different frequencies.

The FCC’s traditional system for managing the radio spectrum is a paradigm of economic inefficiency. This system prevents two licensees—say, one authorized to operate a UHF broadcast television station and the other a wireless telecommunications operator—from selling or leasing spectrum rights to one another. Rather, the right to use spectrum is almost exclusively obtained by petitioning the FCC, which uses drawn-out proceedings to mete out spectrum rights, narrowly prescribing how the spectrum may be used by particular licensees.

To a now-famous economist named Ronald Coase, this sort of closely regulated system violated a fundamental insight: In the face of low transaction costs, individuals allowed to bargain and trade with one another will agree how to put resources to their most efficient use. This insight has become known as the “Coase theorem.” Today, this theorem shapes much of the law and economics literature, underscoring that the critical role for government is to define and enforce property rights, which then enable the market to work—at least if transaction costs are reasonably manageable.

The FCC’s traditional disregard of Coase’s insights, which were spelled out eloquently in a now-influential 1959 paper (which anticipated his Nobel Prize-winning work),\(^5\) reflects two principal considerations. First, the FCC’s inherently bureaucratic processes invite and reward “rent-seeking” behavior. In particular, the FCC’s oversight of spectrum has allowed firms to acquire and protect competitive advantages and associated profits (i.e. “economic rents”) through regulation that limits competition. Second, often in response to complaints by existing holders of spectrum rights, the FCC fears the possibility of interference between adjacent users of spectrum and thus has erected a series of prophylactic rules (including how particular bands of spectrum could be used) to avoid interference. In practice, concerns about interference and rent-seeking go hand-in-hand, as incumbent spectrum users, seeking to protect and enhance the value of their spectrum, regularly invoke interference concerns as a reason to prevent spectrum use by others.

For Coase, the most offensive aspect of the FCC’s regulatory regime was its ban on bargaining between spectrum licensees. As he explained in his 1959 paper and later work, two neighboring property owners—such as a dentist and confectioner—should be able to agree on safeguards to optimize both of their uses of their property. It might be efficient for the confectioner to pay for insulation that protects the dentist from any noise made by the confectioner’s machinery. Rather than allowing and encouraging such win-win bargains (often referred to as “Coasian bargains”), however, the FCC decided for itself what uses were optimal. Thus, in the case of the dentist-confectioner hypothetical, the FCC would simply ban one use so as to allow for the other. In so doing, the FCC generally ignored the possibility that there were accommodations that the two parties could reach under a property rights regime, making them both better off.

In the 1990s, over thirty years after Coase’s powerful critique of spectrum policy, its compelling logic made his criticisms the starting point for any discussion of spectrum policy.\(^6\) The movement toward reform culminated in an FCC Spectrum Policy Task Force (“SPTF”) Report, which set forth comprehensive findings and recommendations for spectrum policy reform.\(^7\) The central conclusion of this report was that the key failing of spectrum policy was not the scarcity of available spectrum, \textit{per se}, but rather the administrative rigidities that prevent more efficient use of this unique resource.\(^8\)

In almost all arguments for spectrum policy reform, commentators emphasize that developing an effective regime of well-defined and enforceable rights is essential to facilitating the improved use of the radio spectrum. Without protections against arbitrary government seizure or harmful trespass upon a spectrum licensee’s property interest, individuals and firms are unlikely to make the long term capital investments necessary to create new, innovative, high-tech products and services that use the radio spectrum.

Invoking the case of real property, some property rights advocates simply assume that rights in spectrum can be as clearly defined and readily enforced as their real property counterparts. More sophisticated property rights advocates recognize the differences between spectrum and real property, but nonetheless make major simplifying assumptions regarding the nature of such rights. Consequently, more careful analysis is necessary to develop an appropriate property rights regime for spectrum.

\section*{II. Property Rights and Property-like Rights in Spectrum}

\(^6\) For a cataloguing of some of the work following Coase’s critique, see Ellen P. Goodman, \textit{Spectrum Rights in the Telecosm to Come}, 41 San Diego L. Rev. 269, 271 n.3 (2004).

\(^8\) \textit{Id.} at 14-15.
A. The Notion of Property Rights in Spectrum

To attorneys, the concept of property denotes “a bundle of distinctive rights.” As one commentator put it, “the term [property rights] implies the ability to buy; hold; use; sell; dispose of, in whole or in part; or otherwise determine the status of an identifiable, separable and discrete object, right or privilege.” Stated more succinctly, the essence of property is the right to exclude others. Following from this principle, the quintessential protection of both real property and intellectual property law is an action for trespass (or infringement in the case of intellectual property) to prevent (or redress) the use of property without the consent of the owner. Along with damages, the remedy for either trespass or infringement often includes an injunction to prevent the illegal conduct from continuing or recurring.

In the wake of Coase’s landmark work, a number of commentators sought to develop the particulars of how to “propertize” the radio spectrum. One notable early such effort was led by Arthur DeVany, who worked with an interdisciplinary team in the late 1960s to develop a proposal for property rights in spectrum. Over the last 35 years, others have amplified on and reinforced the argument for property rights in spectrum. In much of this work, however, commentators have ignored, downplayed, or deferred addressing the realities of radio propagation and how it relates to the definition and enforcement of property rights in spectrum.

As a matter of practical classification, property in spectrum is neither like property in land (real property) nor property in an invention or creative work (intellectual property). Under current law, the FCC is only empowered to provide a license to use spectrum, not to sell off a
particular swath of spectrum. Nonetheless, the FCC has recognized certain rights (and obligations) of spectrum licensees, including varying degrees of exclusivity or protection against interference. In so doing, however, it has not consciously treated the license as a property-like right, thereby leaving many of the practical issues in this approach open to debate and dispute.

The conclusion that firms should be allowed to own property-like rights in spectrum is, however, increasingly beyond dispute. In 1997, Congress underscored its commitment to this policy by requiring an auction for all new spectrum licenses. In early 2003, the Supreme Court made clear that this policy limits how the FCC can treat licenses, invalidating an attempt to pull a license (based on its regulatory jurisdiction) from a party who had declared bankruptcy. Since then, the FCC has indicated its commitment to promoting property-like rights by announcing a series of steps to remove regulatory barriers to trade in spectrum rights through its Secondary Markets Initiative.

Even though the merits of the case for property-like rights in spectrum is beyond dispute, the details about how such a regime would work still must be defined. To be sure, the commitment to a property rights approach for spectrum management does call for two important and clearly defined reforms that the FCC is already embracing (at least to a degree). First, the FCC is following the property rights model’s lead in rejecting the use limitations that historically accompanied spectrum licenses—i.e., rules requiring a particular type of service to be offered using a particular allocation of spectrum. Historically, these limitations have locked in particular

12 See supra note 2.
13 See 47 U.S.C 309(j) (mandating auctions for access to spectrum licenses, with limited exceptions); Report and Order, Implementation of Sections 309(j) and 337 of the Communications Act of 1934 As Amended, 15 FCC Rcd 22,709 (2000).
services and business models even if others could put the licensed spectrum to higher valued uses. Second, and similarly, the FCC is learning from the property rights model by moving away from requirements to use particular technologies, instead allowing licensees to use flexible architectures and to use spectrum much more dynamically. These steps, however, still leave significant issues open to development and continuing debate.

B. Specific Rights Proposed for Spectrum

In their classic 1969 work, economist Arthur DeVany and his co-authors recognized the importance of—and the formidable technical obstacles to—establishing unambiguous and enforceable rights in the electromagnetic spectrum. Ultimately, the DeVany study proposed a multi-dimensional set of rights based upon time, geographic area and spectrum (band) or “TAS” for short. As they saw it, the owner of the TAS-based rights would have the exclusive right to produce (information bearing) electromagnetic waves for a specified period of time (T), over a specified geographic area (A) and in a specified range of frequencies (S). Moreover, they maintained, this system would enable spectrum licensees to trade their licenses and to use them however they chose, thereby giving rise to the more efficient uses of spectrum advocated by Coase in his landmark paper.

The DeVany study recognized that the exclusive possession of spectrum along the TAS dimensions would pose notable technical challenges. Fundamentally, DeVany et al. recognized that radio signals do not respect the time, area, and spectrum boundaries related to the TAS-based spectrum-use rights. In particular, it is much harder to keep a radio signal from “trespassing” along each of these dimensions than it is to keep a person or object from entering onto a particular piece of real property.

16 The terms frequency and spectrum are sometimes used interchangeably. Here “S” refers to the frequency dimension of the spectrum resource, not the resource more generally.
1. Geographic Spillover

The basic problem with geographic boundaries is easy to understand because it stems from the simple and easily observable fact that the strength of radio waves is highly variable. In particular, radio waves emanate from a transmitter antenna and, while they get steadily weaker with distance, they do not respect or automatically stop at pre-set borders. Consequently, at the border between one defined geographic area and another, there is inevitable encroachment by one spectrum licensee’s signals on another’s. The traditional response to this phenomenon (still widely used today) is to control interference by constraining the characteristics and locations of the transmitter systems. Command-and-control restrictions on the placement or types of transmitters are, however, antithetical to a flexible, market-based approach.

To address the wide variability associated with radio propagation, the DeVany study proposed rules that would limit the maximum strength of the signal at the geographic boundary. Under their approach, the owners of spectrum-use rights in adjacent regions were to be protected against interfering signals from surrounding areas at a level greater than the defined limit. Their approach also called for similar constraints as to the time and spectrum/frequency dimensions.

It is important to appreciate that the DeVany approach calls for a fundamental re-orientation of spectrum policy. In particular, it calls for a shift from prescriptively regulating practices and activities (e.g., individual transmitter locations, powers, and antennas antenna heights) to focusing only on the desired result (e.g., the strength of the signal at the boundary). Under such a reformed regime, the holder of the spectrum-use right can—without FCC permission—choose, for example, to deploy a high power, wide coverage system, a low power, “cellularized” system with multiple transmitters and low antenna heights, or an
“infrastructureless” system employing mesh network technology—as long as the out-of-area emission restriction is obeyed.

By developing a thoughtful model for spectrum property rights, the DeVany study helped to transform the debate over spectrum policy reform. Consider, for example, how Lawrence White, an economist at New York University’s Stern School of Business, outlined the parameters of an ideal system of property rights in spectrum in 2000:

The property right to use the spectrum should be defined in terms of a specified spectrum frequency band, a specified geographic area, and a specified time period. The property right (in perpetuity) would be expressed as the right to transmit over the specified spectrum [frequency] band, so long as the signals do not exceed a specified strength (expressed in volts/meter) beyond the specified geographic boundaries during the specified time period (which would be the full 8,760 hours in a year or any sub-division of those 8,760 hours).

In setting forth this vision, White develops a number of useful recommendations for the future role of the federal government under a reformed spectrum policy regime (including acting as a registrar of spectrum holdings, as an owner of some of the rights, and as the administrative agency responsible for resolving widespread instances of interference where private enforcement is impractical because of transaction costs). White does not, however, grapple with any of the implications of the often highly variable nature of radio propagation and radio system performance. Most fundamentally, White does not address the question of whether the dimensions used by DeVany (and adopted in his model) will be reliable in the same sense as those used by real property law.

17 Lawrence J. White, “Propertyzing” the Electromagnetic Spectrum: Why It’s Important, and How to Begin, 9 MEDIA L. & POL’Y 19, 29-30 (2000). Notably, White embraces the phrase “propertyzed” as opposed to “privatized” because, as he explains, the government may still own substantial amounts of spectrum for their own internal uses (e.g., national defense and homeland security) under a property rights regime.
In another important study on spectrum property rights, Evan Kwerel and John Williams of the FCC’s Office of Plans and Policy also adopt the essential elements of the DeVany framework, but they discuss in some detail the interference issues in both the space and frequency dimensions. With regard to these dimensions and to allow maximum flexibility, Kwerel and Williams follow the DeVany precedent of proposing objective limits on the amount of signal power that can spillover into adjacent frequency bands and into adjacent geographic areas. More specifically, they suggest that this proposal follows from the success of the system currently used in controlling out-of-area and out-of-band emissions in the bands reserved for the Personal Communications Service (PCS).

2. Adjacent Channel Spillover

Going beyond the DeVany study, Kwerel and Williams acknowledge not only the possibility of interference between services operating in the same band in adjacent geographic areas, but also between adjacent bands in the same geographic area. The adjacent band problem underscores that interference is not a natural phenomenon—i.e., radio waves do not collide in a destructive fashion—but rather one that manifests itself in receivers. Interference can result (a) from a transmitter emitting radio energy outside the licensee’s assigned bandwidth and into an adjacent band, (b) from a receiver being unable to adequately filter out the energy in an adjacent band even when the transmitter in the adjacent band is operating without spilling over, and (c) combinations of the two. Depending upon the characteristics of transmitters and receivers, “adjacent channel” interference can actually extend beyond immediately adjacent channels.

Adjacent channel spillover is pervasive in spectrum use and, unlike the typical approach of real property, part of the solution may be for the “victim” of a “trespass” to change his or her

use of the property. Consider, for example, a scenario when a receiver is trying to receive a very weak (e.g., very distant) signal in-band, a high-power use (e.g., broadcast television) in an adjacent band is likely to create a spillover problem. Interference in the frequency dimension can be controlled either by controlling the power of the transmitter or by requiring better filters and other techniques on the part of the receiver in the adjacent band. Each option imposes costs on one or the other user of neighboring spectrum bands, especially when very high powered or small, portable devices are involved. There is, in short, no inherent, natural demarcation where one spectrum user’s transmission power “trespassed” on the adjacent channel user’s receiver sensitivity.

As Kwerel and Williams see it, the adjacent channel issue warrants a regulatory safeguard. In particular, they suggest the need for rules that would “rule out extreme power levels [that exacerbate the problem that receivers have in rejecting very strong adjacent signals at reasonable cost] that have little practical benefit but, which, if left unchecked, could lead to excessive interference risk and harmful strategic behavior.” Despite the appearance of embracing a command-and-control-type rule (like the service rules generally eschewed by property rights advocates), Kwerel and Williams suggest (apropos of the Coase theorem) that a default transmitter power rule can be relatively crude because different licensees can then re-negotiate the applicable limits. Reflecting their faith that such Coasian bargains will take place, Kwerel and Williams conclude that the government need not recommend minimum receiver performance standards except in exceptional circumstances.

19 We say “typical” because there are situations where the law withholds protection from property owners under certain conditions, in effect requiring them to protect themselves. See, e.g., LeRoy Fibre Co. v. Chicago, Milwaukee & St. Paul Ry., 232 U.S. 340 (1914) (declining to protect farm owner from harm caused by sparks emitted by passing trains).

20 Kwerel & Williams, supra note 20, at 46. By “strategic behavior,” the authors are referring to actions designed to optimize results favorable to a particular party even if those actions risk hurting others and may well undermine overall social welfare.
C. Toward A Legal Regime For Spectrum

The final, and most significant, development since the DeVany-led study is a recent paper by Robert Matheson. In his paper, he presents the most complete set of property-like rights in radio spectrum as well as the fullest discussion of the practical challenges and limitations of actually employing such rights in the management of the resource.\(^{21}\) Whereas DeVany et al. set forth a model based upon time, area, and spectrum (TAS), which has four dimensions—time, the two dimensions of geographic location (e.g., latitude and longitude), and frequency—Matheson proposes a model based upon seven dimensions. To minimize confusion with the term “spectrum” (which normally only refers to the frequency dimension), Matheson calls his seven dimension model the “electrospace.”

As Matheson proposes it, the seven dimensions of electrospace include frequency, the three dimensions of location—latitude, longitude, and elevation—time, and the two possible directions of arrival (azimuth and elevation angles). By adding altitude as a dimension, Matheson envisions that a holder of spectrum-use rights might choose to sell or lease “air rights” above a ground-based system. As to direction of arrival, Matheson premises that dimension on the fact that a receiver can discriminate between radio waves arriving from different directions. In particular, by using directive antennas, a receiver can gather a greater amount of energy from a signal arriving from one direction while minimizing or “nulling out” the energy of an otherwise interfering signal arriving from a different direction.

Like other proponents of spectrum property rights, Matheson emphasizes the importance of allowing technological flexibility in, and free trading of, spectrum rights. In particular, Matheson suggests that the holders of spectrum-use rights be free to divide or aggregate spectrum

along any of the electrospace dimensions. Notably, however, Matheson’s added complexity, while more sophisticated and realistic, also raises new difficulties. It is just as impractical to build antennas that focus all of the transmitted energy in a single direction or cone as it is to build transmitters that confine all of the transmitted energy to one frequency range or channel. By arguing for spectrum owners’ rights against (and in protection of) direction of arrival, Matheson begs the question of how that measure could be effectively enforced.

On the issue of whether a maximum power level must be specified to avoid adjacent channel interference, Matheson refines the approach taken by Kwerel and Williams. He notes that the power impinging upon the receiving system is the critical issue and thus it is better to regulate the actual power level received at ground level or a specified location (as opposed to at the transmitter). This approach would regulate results and not practices and activities, thereby giving the spectrum licensee greater flexibility in how to meet the relevant constraint while still offering protection to the receivers at risk of interference.

Unlike earlier proponents of the property rights approach, Matheson appreciates many of the difficulties and implications of defining exactly how the rights are to be specified. In particular, Matheson realizes that setting limits on the spillover outside each of the electrospace dimensions and on the maximum power levels that can be used inside those dimensions is much more difficult and costly than policing trespass to land. He explains, for example, that a very stringent limit on the spillover effects into an adjacent geographic area may force the rights-holder to reduce power such that significant “holes” in coverage are produced near the boundary. Or it may force the rights-holder to select a cellular architecture with multiple low-power/low antenna-height sites in order to control the spillover and still provide the necessary coverage. By contrast, a very generous limit on spillover into adjacent geographic areas would impose costs on
the rights-holder across the boundary which, for example, would have to adapt more expensive interference mitigation techniques.

Of all commentators since DeVany, Matheson makes a particularly important contribution in advancing the state of the debate and discussion about how property rights in spectrum would operate. Notably, he highlights how choices about maximum power levels do not lend themselves to easy answers. They may well dictate the use of particular technologies, even if not otherwise cost effective. Moreover, there are important enforcement questions only beginning to be examined—such as whether it is possible to “game” the system through the use of multiple transmitters/spillover limits. Unfortunately, even Matheson does not analyze the nature of radio propagation and the implications of its wide variations for establishing clear and enforceable property-like rights in the radio resource. Part III takes on this very difficult challenge.

III. Radio Wave Propagation and Its Effect on Spectrum Property Rights

A. The Basics of Radio Wave Propagation

As we discussed earlier, radio waves weaken as they travel away from the transmitter. In free-space, radio waves steadily weaken in a very uniform, predictable way and at a rate which depends upon the frequency. In particular, the higher the frequency, the faster the waves weaken. In the real world—on the earth and its environs—the situation is much more complicated and radio links are affected by the earth itself, the atmosphere, and by the intervening topography and natural and manmade objects such as foliage and buildings. The

22 Free space is a theoretical concept of unlimited space devoid of all matter. Here the term implies remoteness from material objects that could influence the propagation of electromagnetic waves. See the definition of free space in Federal Standard 1037C, Glossary of Telecommunications Terms, available at: http://www.its.bldrdoc.gov/fs-1037/.
magnitude of these effects depends heavily upon the relevant frequency (again, with the higher frequencies generally affected more).

At the lowest radio frequencies, below 100 kHz or so, radio signals travel in a reliable way between the earth and a portion of the atmosphere known as the ionosphere.23 Thus, using very high power transmitters, guided signals sent at this frequency can travel over great distances and penetrate into the ocean. At higher frequencies, in roughly the 300 kHz to 3 MHz range, radio technology relies on two basic modes of propagation: ground waves and sky waves. Ground waves, as the name suggests, operate close to the earth’s surface (and thus travel limited distances unless repeated) whereas sky waves travel into the earth’s atmosphere and bounce back (often over a very long distance).

Transmissions using these lowest frequencies are far less predictable. The strength of signals from traditional AM broadcasting stations (and the interference between and among them) is likely to vary significantly from daytime to nighttime, from location to location (e.g., with latitude) and from season to season. In the daytime, coverage is provided by the ground wave and the service is comparatively reliable but relatively limited in range. In the night time, however, the radio signals in this range are carried beyond the horizon by reflections from the ionosphere, permitting coverage over much greater distances but with a penalty in terms of stability because of the highly variable conditions of the ionosphere.

The next highest range of the spectrum, the 3 MHz to 30 MHz range, is traditionally referred to as the shortwave region. In this region, the ground wave component becomes less

23 The ionosphere is part of the earth’s atmosphere that extends from about 70 to 500 kilometers above the earth. In this region, ions and free electrons exist in sufficient quantities to reflect and/or refract electromagnetic waves. The ionization is produced by radiation from the sun and hence varies with the position of the sun and with solar activity. See the definition in Federal Standard 1037C, \textit{supra} note 25.
important and the signals are carried over vast distances by reflections from the ionosphere or even serial reflections between the earth and the ionosphere. At one time, before the advent of communications satellites and high capacity undersea fiber optic cables, this portion of the spectrum was particularly prized for long haul, intercontinental communications in military, governmental, and commercial applications. Propagation conditions in this region of the spectrum, however, vary widely with the condition of the ionosphere (including the maximum frequency that will be successfully reflected) and those conditions depend upon location, season of the year, the time of day, and level of solar activity. Because of this high variability, the relatively limited bandwidth available, and the size of the antennas required, this portion of the spectrum is no longer as highly desirable as it once was.

The region of the spectrum between 30 MHz and 300 MHz is known as the Very-High Frequency (VHF) region and it is the home to a number of popular services including VHF television, FM radio broadcasting, and a number of mobile services. The lower portions of the VHF range exhibit some of the negative characteristics of the shortwave region because very long distance ionospheric propagation (and associated interference) occur in certain seasons, efficient antennas are still somewhat unwieldy for mobile/portable applications, and building penetration is often difficult.

The Ultra-high Frequency (UHF) portion of the radio spectrum—the portion between 300 MHz and 3,000 MHz (3 GHz)—is widely regarded as the most desirable range for a variety of applications, especially those involving communications with mobile/portable devices. In this region, efficient and directive antennas are reasonable in size, the frequencies are high enough to avoid undesirable ionospheric reflections, the necessary power is easy to generate, natural and man-made sources of unintended interference (e.g., from florescent lights or digital computers) are negligible or significantly lower than in other bands, and radio wave propagation into and
around buildings is not unreasonably difficult. Because of its desirable characteristics, this region of the spectrum is often referred to as “beachfront property.” The region is home to UHF television broadcasting, to both the cellular and the Personal Communications Service (PCS), and a host of other important services.

Despite its desirable, more stable characteristics, radio signals in this portion of the spectrum are still subject to a host of vagaries that cause the strength of signals to vary widely. The signals are subject to (a) being bent (refracted) by the earth’s atmosphere, (b) diffracted (bent) by edges of obstructions such as buildings, and (c) reflected off of natural and man-made obstacles such as mountains and buildings. Unlike even higher regions of the spectrum, frequencies in this range are not affected significantly by rain, snow, and fog, but they are absorbed to varying degrees by foliage and other clutter.

Frequencies in the UHF range are also subject to multipath fading. As the name implies, multipath fading is produced when multiple copies of the same signal arrive at a receiver via different paths. This might include a direct or “line of sight path” from the transmitting antenna to the receiving antenna and one or more indirect paths created by reflections from buildings, nearby vehicles, water, or other terrain features such as mountains. Because the reflected signals travel over a longer distance than the direct signal, they arrive at slightly later times or, to use the more technical term, with different phases. In some cases, when the different signals are “in-phase,” they will add together in the receiver and increase the strength of the received signals. In other cases, when the signals arrive “out-of-phase,” they will tend to cancel each other out, producing sometimes very deep fades in the signal power received.

24 In over-the-air television, multipath is what sometimes produces a “ghost” image on a television screen.
The above description of radio propagation in the 300 MHz to 3 GHz range implies rather static conditions but, of course, the actual situation is typically much more dynamic. For example, the amount of atmospheric refraction is not constant, but rather changes with weather conditions. Atmospheric refraction of radio waves is useful in that it normally extends the transmission range somewhat beyond the physical horizon but, as the refractive index changes with weather patterns, it produces variations over time in the received signal strength at a single location. Indeed, in certain summer-time conditions and/or over bodies of water, a rather dramatic situation may occur in which the radio signal is carried over great distances (hundreds of kilometers) due to a phenomenon known as “ducting.” Again, this may produce much stronger signals (and hence greater interference) in distant receivers than normal. Time variations in received signal strength can also be produced by changes in the multipath conditions such as when a nearby truck producing a reflection moves or the antenna tower sways or twists in the wind. Longer term variations in received signal strength can also be produced by seasonal variations in the amount of foliage and, hence, in the amount of absorption that the radio wave is subjected to.

In addition to time variations in received signal strength at a particular location, even slight changes in location can produce wide variations as well. For example, in the multipath situation, a slight change in location (a few tens of centimeters) may mean that signals which formerly combined to produce a strong signal subtract or cancel one another to produce a much weaker signal. In addition, a person using a cellular radio handset may be in the radio “shadow” of a tall building. Moving around the corner may increase the signal significantly when the line to the transmitter is no longer blocked. Similarly, as mentioned earlier, the strength of the received signal can vary significantly with altitude. For example, a receiver located at ground level under a thick covering of foliage may receive a very weak signal from a distant base station while a receiver located in the upper stories of a nearby building with line-of-sight to the
transmitter may receive a very strong signal. In short, even as to the high value portion of the radio spectrum between 300 MHz and 3 GHz, radio signals received from distant locations are likely to vary significantly with time, with small changes in location, and with changes in altitude.

Because they travel different paths, the strength of the desired signal and interfering signals will often vary independently so that interference may manifest itself one moment and virtually disappear the next. This variability means that the desired and interfering signal strengths at particular locations can, as a practical matter, only be predicted in a statistical sense. To date, however, commentators have largely glossed over this critical point, proceeding as if the signal strength at the boundary is a reliable and constant level that can be easily managed just like detecting trespass to land. To underscore how proponents of the property-rights model have not adequately addressed this point, the next section discusses the case of AM radio.

B. The Case of AM Radio

As one of the first regions of the spectrum to receive commercial, legislative, and regulatory attention, AM radio is a notable and historic case study. More importantly here, this region exhibits some of the widest variability in propagation conditions and, hence, presents some of the most difficult challenges for defining the appropriate property rights. By contrast, the PCS systems present some of the easiest cases for property rights advocates. These systems use a favorable frequency range. They are already cellularized, an architecture that is easy to manage. And users of this spectrum are repeat players with long-term interests that give them incentives to cooperate with one another. By focusing on the easiest case, and ignoring the wide variety of difficult challenges, property rights advocates often understate the difficulty of reforming spectrum policy to facilitate a market-based environment.
As explained above, in the AM broadcast band between 550 kHz and 1.71 MHz, the propagation conditions change dramatically due to the influence of the ionosphere. During the daytime, the lower layers of ionosphere absorb radio waves in this range, making it difficult (and rare) for signals to travel very long distances. Thus, during the day, the transmission ranges are limited to ground wave distances. During the nighttime hours, however, the lower layers of the ionosphere disappear and the waves are reflected far beyond the horizon by the upper layers. During the transition hours between daytime and nighttime, the signal levels are particularly volatile.

The conditions of the upper layers of the ionosphere not only vary widely at night and during transition hours, they vary from hour-to-hour, with the season of the year, the level of solar activity, and the location (e.g., latitude) of the transmission path. Moreover, this portion of the spectrum is particularly susceptible to natural interference (i.e., static) produced by lightning strikes from both local and distant thunderstorms. During the summer months, this static may effectively mask interference from distant stations while, during the quiet winter months, signals from thousands of kilometers away produce noticeable interference to local stations. Finally, the interference between the groundwave and skywave signals can, at certain distances, cause severe fading effects, making the desired signal more or less susceptible to interference from one moment to the next.

For a band like that traditionally used for AM broadcasting, it seems totally impractical, if not impossible, to provide licensees with anything close to certainty in terms of interference protection—at least using the classic property law trespass concept. If, for example, a station in an adjacent—or more remote—geographic area could prosecute a trespass claim against a transmitter that created interference, it could seek damages or injunctive relief based upon a series of natural conditions that happen only infrequently. Stated in the terms used by the DeVany
study, the question is: under what conditions do you measure signal strength at the boundary? Unfortunately, there are no easy answers to this question because the realities of radio wave propagation in this region of the spectrum simply do not lend themselves to clear and enforceable boundaries for the geographic area dimension of the spectrum resource.

In a very recent paper, Charles Jackson, an independent telecommunications consultant, recognizes the long-range interference issues associated with the AM broadcasting band and argues that the pervasive interference in the band “creates multiple interlocking externalities that cannot be taken into account in simple market transactions.” He concludes, as we do, that “a spectrum management system for the AM band using property rights based on station licenses would face enormous difficulties.” Jackson concludes, as we noted above and discuss below, that the cellular and PCS bands are more amenable to a property rights regime because of “limited signal range, systems operating over large blocks of spectrum and over large geographic regions, and control over both transmitters and receivers by the system operator.”

Were licensees allowed property-like rights in spectrum along the lines available for landowners, there is a risk that they would bring trespass claims as a means of extracting payments from unlucky transmitters. In particular, a firm could acquire a license for an area reached, even very intermittently, from a party in operation without a right to transmit to that location at that signal strength. If that firm brought a trespass action to enjoin the transmission from the operating firm, it would have enormous leverage over the other party, which would fear an injunction that would potentially shut down their service or, at a minimum, waste a substantial

26 Id. at 1.
27 Id. at 34.
investment of that firm’s resources. To avoid such an outcome, the owner of the offending
transmitter might well agree to a costly and oppressive “licensing” or “easement” arrangement
that profits the newcomer regardless of whether the newcomer makes any use of its spectrum at
all. In our view, this scenario would be far worse than one of “muddy entitlements” that are
difficult to enforce (a la AM radio). 28

The above discussion of a property right being opportunistically acquired and enforced is
hardly a speculative hypothetical. Rather, it parallels the intellectual property rights nightmare of
the “patent troll.” Patent trolls buy up patent rights—which provide a complete right to exclude
others from the use of an invention—knowing that other firms are using the invention unaware of
the patent or believing it will not be enforced. Then, without ever producing a product, the patent
troll invokes its patent rights. Because the patent user has made irreversible investments, the
patent troll can use its leverage—i.e., the threat of an infringement lawsuit—to extract a
significant licensing fee.

C. Using Performance Predictions in Establishing and Enforcing Property Rights

As we showed above, property rights in spectrum cannot operate identically to their real
property counterparts. Moreover, property rights in spectrum will need to differ from the ideal
vision set forth by the DeVany study and its successors. In particular, spectrum boundaries will
often be measured statistically and enforcement will have to be tailored so as not to replicate the
patent troll problem. In this section, we begin to outline what model of property rights we view
as realistic and appropriate.

28 The concept of “muddy entitlements” is often identified with Carol Rose. See Carol M. Rose, Crystals
and Mud in Property Law, 40 STAN. L. REV. 577, 592 (1986).
In designing radio systems that utilize the 300 MHz to 3 GHz range of the spectrum, engineers make extensive use of mathematical models to estimate the performance of radio transmissions. In basic terms, these models are used to compute what is known as “transmission loss”—i.e., the change in signal power from the transmitter to the receiver. By knowing the transmitter output power and the predicted transmission loss for a particular path, an engineer can estimate the strength of the signal that will be received at the receiver. The same models also predict the level of interference that will be received from other, distant transmitters on the same or adjacent channels. Calculating the level of the desired signal and the level of the undesired signal(s) (along with the assumed or measured characteristics of the receiver), the engineer can estimate the end-to-end performance of the radio link in terms of, say, availability and audio quality or bit-error-rate. The engineer can also conduct cost and performance tradeoffs—e.g., among an increase in signal power at the transmitter, a more focused/directive antenna, or improved sensitivity of the receiver.

As the existing regulatory regime of spectrum usage does, any likely successor will need to rely on predictions of signal strength to a considerable degree. Predictive models range from relatively simple ones (e.g., based on “back of the envelope calculations”) to the very complex (e.g., based on complex computer software programs). In general, more complex models are typically based upon electromagnetic wave theory, empirical results based upon extensive field measurements in different environments, or, often, a combination of the two.

In addition to their complexity, models also differ in how they deal with site specific factors. In some cases, the relevant information (e.g., the locations of both terminals and the intervening terrain) will not be known in any detail, leading engineers to rely on “site general” models. A site general model is likely to yield predictions of signal strength along a radial from the transmitter site that decreases monotonically with distance from the site. By adopting the
simplifying assumption that signal strength drops off consistently with increased distance from
the transmitter, site general models produce coverage contours around the transmitter that are
smooth neat maps of where a signal can be detected.

To some property rights commentators, a simple site general model provides a picture of
spectrum that is deceptively similar to real property. In reality, the actual terrain and the presence
of buildings and other urban clutter is likely to affect signal strength, causing it to drop
significantly in an area that is “shadowed” from the transmitter and then recover beyond. (For
users of cellular telephones, this phenomenon is the explanation for some of the frustrating
“holes” or gaps in coverage within a service area.) Similarly, beyond the contour of an otherwise
neat coverage map, a signal may actually increase significantly—on a hilltop or other favorable
location that permits a greater line-of-sight path to the transmitter site than a simple, general
model might predict.

In some cases, a predicted model of signal coverage and its real-world counterpart will
look nothing alike. In particular, there may be islands of coverage well beyond the predicted
contour. There may be gaps and islands of coverage so numerous and complex in shape (on
account of hilly or mountainous terrain or areas with tall buildings or other obstructions) as to
render meaningless a predicted boundary. As for television broadcasters, for example, the curves
based on predicted signal strength (the so called “Grade B contour”) often will bear little
resemblance to the actual broadcast area.

To make matters even more complicated, a statistical model does not produce a clear map
of where signal strength will be detectable 100% of the time. Rather, it predicts that the signal in
a given vicinity will exceed some power level \(x \) percentage of the time and at \(y \) percent of the
locations within that vicinity. Thus, for example, the Grade B coverage contour for a television
broadcast station means that, at a point along the contour, the desired signal will be greater than the required value 50 percent of the time and at 50 percent of the locations in the vicinity of the point. The predicted strength of interfering signals at the point will have similar statistical characteristics. Stated simply, the contours of a coverage area are not sharply defined boundaries like those of real property.

There is more deviation between predicted models and reality, including assumptions and planning factors. Consider, for example, that in establishing allotments/assignments in television broadcasting, regulators make certain assumptions about the receiving antenna’s height and directivity, the reduction in signal strength in the cable going from the receiving antenna to the receiver, and the required desired-to-undesired signal ratio for acceptable performance at the receiver input. If the systems do not actually conform to these assumptions, the possibility of interference becomes much more (or less) likely.

The margin for different outcomes based on planning factors is potentially a considerable wild card in any model. As noted above, a transmitter located at ground level (or, even worse, inside a building) is apt to produce a much weaker signal than one mounted on a roof top above the surrounding obstructions. The antenna height problem is exacerbated when the corresponding transmitting/receiving unit is a handset that can be in the basement of a garage one minute and on the top floor of a building the next. The receiver itself might also vary from model to model or manufacturer to manufacturer. Part of what makes the receiver issue difficult to manage is that, in some services (like broadcasting and unlike cellular telephone service), the devices are not controlled by the licensee. The consumer is free to buy what may turn out to be equipment that either falls short of the capabilities assumed in the model or exceeds them, making the predictions of any model less likely to be accurate.
IV. Implications for Establishing Property-like Rights in the Spectrum Resource

A. From Ex Ante to Ex Post?

The historic use of propagation models to establish prescriptive service and technology rules to control interference reflected a fear that the possibility of interference would endanger the viability of valued services and thus should be avoided at all costs. This *ex ante* (before-the-fact) model often erred on the side of preventing entry where such entry created even the slightest possibility of creating additional interference. This model also played right into the weakness of the command-and-control model of spectrum management as it bolstered the rent-seeking claims of incumbents who viewed entry as a threat to their bottom line.

The old *ex ante* model also played to the New Deal sensibility that the FCC could successfully implement a wise man approach that knew best about how spectrum could and should be used. Even on the most generous of assumptions, confidence in this approach was misguided.

In particular, even if the planning factors (assumptions) were all correct (including the required desired-to-undesired signal ratios) and the models accurately predicted the contours and the strength of the interfering signals, a receiver could be at an “unlikely place and time” where the desired signal is weaker or the undesired signal is stronger due to normal variations in radio propagation conditions. Alternatively, even if the planning factors were all correct but the propagation model did not correctly predict the coverage contour or the level of the undesired signal, a receiver could still be in an “unlucky place and time.” Finally, it is possible that the planning factors themselves were inadequate or otherwise incomplete, resulting in unanticipated interference.
As they constructed their model for spectrum management based on property rights and the promise of Coasian bargaining, past commentators naturally moved to the property line, operating under the theory that actual spillover—i.e., spectrum “trespass”—would form the basis for boundary disputes. While this may be plausible in certain cases (such as PCS), we have shown that geographic boundaries are less predictable and controllable in the AM band and others with sub-optimal propagation characteristics. The movement to property-like rights and *ex post* enforcement thus may founder if based on addressing actual spillover effects alone.

B. Using Predictive Models in Ex Post Property Rights

Building upon current practice in some services (e.g., television broadcasting), it is possible to develop a system of spectrum-use rights based upon *predicted* signal strengths that could be enforced after the fact. Geographical boundaries could be established and the owner of a block of spectrum in the frequency dimension would have the right to spill energy over into the adjacent geographic areas up to some maximum amount. Exceeding the maximum would violate the neighbor’s property right. Rather than measured at the boundary, however, the spillover amount or level could be computed using an established propagation model.

It is important to note that, as a threshold matter, this system would suffer all of the challenges described above in terms of establishing the initial maximum levels and establishing the receiver antenna height for predicting the actual level that would be present from the transmitters. Nonetheless, in designing a legal regime for spectrum rights, it may well be necessary to incorporate a predictive model into the definition of the relevant right—a challenge, to be sure, not confronted by real property rights. Moreover, whether bargaining over predictive models would raise transactions costs beyond acceptable limits and be legally administerable is also an open question.
Despite its associated challenges, employing a predicted rather than measured level at the geographic boundary has two major advantages. First, it is a relatively simple approach, although regulators may well opt for some degree of complexity to provide adjacent parcel owners greater initial assurance against actual interference. Second, this approach has the advantage of potentially lower enforcement costs since computer modeling rather than expensive field measurements would be used. In the case of television broadcasting and to a certain extent in the commercial mobile radio services, such models are already in use and, at least in a “muddy entitlements” sense, are working reasonably well.

A property rights system that heavily relies on \textit{ex ante} predictions and not on \textit{ex post} (after-the-fact) findings of actual interference would, however, involve several sacrifices. First, any system that provides discretion for the FCC to determine the specifics of a predictive model risks inviting rent-seeking behavior by incumbents. Second, licensees may not get the certainty they require from a predictive model requiring them to adopt additional measures (be they cooperative arrangements or technical contingency plans). Finally, a system based on predictions leaves open the question of how to enforce property rights when there is a major discrepancy between predicted and measured levels at the boundary. To be sure, allowing some measure of a safe harbor is advisable, but unless the predicted contours are reasonably close to reality (and checked to some degree against reality) spectrum licensees may well resist making investments in equipment that will be ineffective in delivering a promised service.

Up to this point, we have addressed two broad categories of interference problems associated with establishing property-like rights in spectrum. The first is geographic spillover between neighbors operating in the same frequency and the second is adjacent channel interference — spillover in the frequency dimension between systems that are in the same geographic area. There are other interference mechanisms that we have not addressed in this
paper. These include spurious emissions from transmitters (as opposed to adjacent channel spillover in the frequency dimension), transmitter and receiver intermodulation, and receiver desensitization due to strong out-of-band signals. Notably, they can be important in certain situations and ultimately will need to be accounted for and addressed in any property-rights regime.

In the case of adjacent channel interference and geographic spillover, we have described the difficulties associated with choosing the initial limit on signal strength at the transmitter and at the geographic boundary. On one hand, setting a limit that is too stringent risks forcing the rights-holder to reduce power to the point of creating coverage holes, forcing it to adopt a cellular architecture that may not be optimal for a particular service, or forcing it to deploy additional cell sites to provide adequate coverage while staying under the spillover limit. On the other hand, setting limits that are too lenient may impose excessive mitigation costs on the rights-holder across the geographic or frequency boundary, including costs associated with increasing transmitter power to overcome the interference or abandoning service in areas where the interference is excessive.

Compounding the issues related to limits on signal strength, we also underscored that the actual signal strength at the geographic boundary can vary significantly. In particular, depending on the height of the receiving antenna as well as the time and location in the immediate area of the receiver (vis a vis their effects on radio propagation), results can vary widely. To emphasize this point, we analyzed the extreme but historically important case of AM radio. In so doing, we described the wide changes in signal strength due to diurnal, seasonal, solar cycle and path location variations, concurring with Jackson’s conclusion that introducing a property-rights regime in the AM radio band along the lines used for real property would face enormous—and likely insurmountable—difficulties.
C. The PCS Story: Precursor or Anomaly?

Despite the difficulties associated with establishing property rights in the space and frequency dimensions, we cannot ignore the fact that the FCC has established similar rights in certain services, namely television broadcasting and the commercial mobile radio service, and that interference issues at the associated boundaries are successfully resolved. Notably, valuable transactions involving the transfer of those rights take place on a routine basis. For example, in cellular and PCS, the geographic spillover limit is expressed in terms of the maximum signal strength permitted at the boundary and apparently disputes over interference at the boundary are routinely and successfully resolved without the involvement of the FCC.

This success in cellular and PCS is usually attributed to a number of factors. First, the large geographic areas associated with cellular and PCS bands means that the area of which geographic spillover is a concern is only a relatively small percentage of the total area. Second, the fact that providers of cellular and PCS services are stable and “repeat players,” there are considerable incentives for cooperative behavior and huge reasons not to engage in strategic behavior along the lines of patent trolls. Thus, like other environments where industry norms are effective regulators, a commonality of interest reflects a shared understanding that each party possesses a mutual threat of interference and all are better off as a result of cooperating with one another. Moreover, because such negotiations continue over time and often involve engineers who may adhere to a professional ethic to act in good faith (i.e., honestly report technical capabilities and limits), this environment is uniquely suited to cooperative behavior—even if the entitlements themselves are not clearly defined or enforced by the FCC.

By focusing on the case of PCS licenses, spectrum property advocates risk adopting an overly simplistic benchmark for what to expect from a more broadly designed property rights
framework. First off, the PCS services are cellularized and thus less likely to create interference in the geographic dimensions. Second, there are only a few firms who have the right to use geographically large swaths of spectrum. Third, such firms are repeat players and face considerable incentives to work out cooperative arrangements with one another. Consequently, even though the reality of the spectrum property right is “muddy,” they are still able to agree on mutually beneficial accommodations.

The optimism that Kwerel and Williams take from the PCS model is potentially misplaced. To be sure, it is theoretically possible that transaction costs between identifiable neighboring users of spectrum will be low and that mutually beneficial arrangements (like that in the PCS context) will be the rule. We are skeptical that this confidence will be borne out and think it likely that the uncertainties or “muddiness” of geographic boundary rights caused by signal strength variations due to propagation effects will make it difficult for many parties to agree on reasonable arrangements to avoid interference. Instead, it is quite possible that regular or occasional islands of high signal levels/interference across geographic boundaries that are tolerated today will become the subject of litigation with more clearly defined spectrum rights. In the worst possible case, such litigation will be strategic and brought by the spectrum equivalents of patent trolls.

V. CONCLUSION

Coase’s vision of promoting a market for licenses to use the radio spectrum remains the guiding light for spectrum reform efforts. Building on that wisdom, numerous commentators have chartered paths to facilitate markets for spectrum licenses and a legal regime to enforce property-like rights. Such paths, however, may fail to achieve their goals because defining rights to use spectrum is far more difficult than ordinarily suggested. The case study of PCS services is, for a number of reasons, potentially misleading about the broader possible success of spectrum
property rights for bands lacking some of the unique characteristics of that band and the providers offering PCS services. Consequently, there is a need for more careful analysis about what type of property regime will operate effectively to govern rights in spectrum. We readily concede that we have not solved all (or even most) of the numerous issues related to defining spectrum rights, but we believe that we have identified a number of questions that must be answered in order for the move to a property rights regime to be successful.